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Abstract 

We present a FORM program HEPLoops for analytical computation of a- 
bitrary massless, one-, two- and three-loop Feynman diagrams of the propaga- 
tor type within dimensional regularization. The program is oriented towards 
large scale analytical perturbative Quantum Field Theory calculations, within 
‘t Hooft’s minimal subtraction prescription, up to four-loop level. 
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PROGRAM SUMMARY 

Title of program: HEPLoops 

Program obtainable from: Institute of Theoretical Science, University of Oregon, Eu- 
gene, OR 97403 USA 

Computers: IBM-PC, IBM-3090, VAX, Sun and NeXT workstations 

Installation: SunOS UNIX at the Institute of Theoretical Science, University of Ore- 
gon, Eugene, OR USA. 

Programming language used: Algebraic programming system FORM (free for distri- 
bution version 1.1) by J.A.M.Vermsseren 

Storage required: approx. 400 Kbytes 

No. of lines in program: 3380 

Keywords: 
Perturbative Quantum Field Theory, High energy physics calculations, multiloop 
Feynman integral, Feynman diagrams, dimensional regularization, minimal subtrac- 
tion scheme, analytical calculations, algebraic programming systems. 

Nature of physical problem: 
Multiloop massless Feynman integrals of the propagator type, usually appearing in 
high energy physics calculations are computed analytically within dimensional regu- 
larization. 

Method of Solution: 
The recursive type algorithm developed by Chetyrkin and Tkachov is used 

Typical running time: 
5-lo3 sec. and more in some complicated cases. Running time strongly depends on 
the topology of the particular Feynman diagram. 
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1 Introduction 

The status of perturbative Quantum Field Theory (QFT) calculations has been inten- 
sively discussed during the last 15 years. In particular, significant efforts have been 
made to develop the methods of perturbation theory to study a wide class of problems 
including : calculations of renormalization group functions and renormalization con- 
stants in various QFT models; calculation of coefficient functions in operator product 
expansions and calculations of various cross-sections and decay widths (see, e.g., [l]). 

After the application of certain theoretical methods , such as the renormalization 
group, dispersion relations, operator product expansions etc., the problem of evalua- 
tion of physical quantities effectively reduced to the problem of evaluation of corre- 
sponding Feynman diagrams. In each order of perturbation theory, contributions to 
the physical observables come from a finite set of Feynman diagrams with the same 
number of internal momentum integrations (number of loops). Feynman diagrams 
are usually evaluated within the dimensional regularization method [2] and ‘t Hooft’s 
minimal subtraction (MS) prescription [3] for ultraviolet renormalization. 

Using the recent progress in calculationalmethods [4], in some cases (in particular, for 
calculation of renormalization group functions) one can obtain a significant simplifica- 
tion of the problem , by setting to zero dimensional parameters (usually all masses and 
some of the external momenta). Other physical quantities allow expansion in pow- 
ers of m2/QZ with massless coefficients and, for high enough energies (m’/Q* + 0, 
where m is a fermion mass and Q is a transferred momentum), calculation of the 
first few terms in this expansion gives satisfactory results (e.g., in calculation of to- 
tal cross-sections and decay widths). Thus we deal with a wide class of problems, 
which are reduced to the evaluation of massless, multiloop, dimensionally regularized 
Feynman diagrams of propagator type (with only one external momentum). The an- 
alytical recursive type algorithms for one-, two- and three-loop massless propagator 
type Feynman integrals were developed in [5]. 

In practice, the calculation of physical quantities within perturbation theory is very 
cumbersome and tedious already beyond the one- loop level, especially in realistic 
QFT models, like QCD. However, algorithms [5] allow convenient implementation on 
the algebraic programming systems like REDUCE [6], SCHOONSCHIP [7], FORM 
[8] etc., which makes it possible to perform high order perturbative calculations up 
to the four-loop level. 

Several programs were written during the last ten years for analytical calculations of 
multiloop Feynman diagrams. For better orientation let us briefly review a prehistory 
of such programs. 

The First program for the SCHOONSCHIP system [7] has been worked out in [9]. 
This program evaluates traces of products of Dirac y matrices and performs other 



simplifications, to reduce the initial diagram to a sum of scalar integrals. Then 
the program uses a database of precalculated scalar integrals in the form of trivial 
substitutions. This program is very fast for the very restricted number of problems 
it was written for. However, a large number of problems are not solvable by this 
program, since too many scalar integrals have to be precalculated by hand, which is 
also unreliable. The above program has been used in the first three-loop calculation 
of QCD /?-function [lo]. Another program for the REDUCE system, which also uses 
“database approach” was worked out for some topologies of three-loop integrals [ll]. 
However, such an approach can lead to the wrong results [ll]. In any case, more 
complicated problems cannot be dealt with unless calculation of two- and more loop 
integrals is made fully automatic. 

The first full realisation of algorithms [5] at the two-loop level was done for the 
REDUCE system [S] in the form of procedures. The program calculates one- and 
two-loop arbitrary massless propagator type Feynman integrals and allows arbitrary 
tensor structure in the numerator of integrand. Several two-loop calculations have 
been done with the help of this program. (e.g., calculation of coefficient functions 
of gluon and quark condensates in the sum rule method [12]; calculation of two-loop 
anomalous dimensions of baryonic currents [13] etc.). Later this program was called 
LOOPS and published in [14]. However, for large scale calculations LOOPS uses 
comparatively large computer resources. 

The implementation of three-loop algorithms for the CDC version of SCHOONSCHIP 
system [7] first was done in [15]. This program calculates arbitrary massless scalar 
(with no free Lorenz indices) one-, two- and three-loop Feynman diagrams of the prop- 
agator type. The calculation of the following physical quantities has been performed 
by this program: calculation of total decay width of neutral Higgs boson at the three- 
loop level [16]; calculation of O(mz) correction to the correlator of electromagnetic 
currents at the three-loop level [17]; calculation of four-loop QED /3 function [18] and 
most impressive - calculation of dtot(e+e- + hadrons) in QCD at the four-loop level 

PI. 

The next program [20] was written for the IBM and CDC versions of SCHOONSCHIP 
[7] and fully implements algorithm [5]. This program uses programming experience 
and some modified parts of [15] and includes a number of original solutions. The 
structure of the program has been changed according to needs of IBM version of 
SCHOONSCHIP [7]. As a test, the recalculations of three-loop total decay width of 
Higgs boson and three-loop O(m2) contributions to the correlator of electromagnetic 
currents has been performed by the program [20]. As a result, it was shown in [21, 221 
that the results of previous calculations [16] and [17] by the program [15] was incorrect. 
Later, with help of test runs on the program [20] the source of error was discovered 
in the program [15] by A.Kataev in collaboration with S.Larin and the author of the 
present paper. The error was insufficient expansions in Laurent series of one-loop 
“basic” scalar integrals (for the terminology see [5]). Another independent source of 
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errors in the program [15] was found by the author of present paper. This source 
was due to an incorrect logical structure of the program [15] for trace calculations. 
Fortunately, the program [20] was initially free of these errors. Unfortunately, due to 
the above mentioned errors, the exciting results of [18] and [19] also turned out to 
be incorrect. After this the program [20], without changes was published in [23] with 
the name of MINCER. The recalculations of QED p function and R(s) in electron 
positron annihilations at the four-loop was done independently with help of program 
MINCER [23] in [24] and with help of program [15] (the wrong program block was 
substituted by the corresponding block of MINCER [23]) in [25]. The results of both 
calculations are in agreement. 

During the last decade SCHOONSCHIP was the only system applicable to very large 
scale calculations (105-lo6 terms). However this system is operable on the very re- 
stricted class of computers (only IBM mainframe and CDC) i and the installation 
requires some nontrivial experience and knowledge. On the other hand, many dif- 
ferent types of fast enough computers, with flexible configurations, are available at 
present. Thus, it was highly desirable to have a SCHOONSCHIP - type system for 
various computers, including PC. Recently, the new SCHOONSCHIP -like algebraic 
programming system FORM has been worked out [8], which is operable on the nu- 
merous different types of computers. 

In the present paper we will briefly describe the new program HEPLoops for high 
order analytical perturbative calculations for the FORM system. This program was 
briefly announced in the review paper [27]. I n order to make easier to use this program 
the reader’s acquaintance with the first three sections of [23] (where the algorithm [5] 
is described) is highly advisable. 

2 External Specifications of Program HEPLoops 

The program HEPLoops (version 2.0) is intended for analytical computation of di- 
mensionally regularized, massless Feynman diagrams, depending on a single external 
momentum, with the number of loops 1 5 3. The program realizes the algorithms 
[5] (for the description of algorithms see also [23]) within the algebraic programming 
system FORM [8]. The program calculates the expansions of Feynman integrals in 
terms of the parameter of dimensional regularization E = 2 -D/2 (D is the space time 
dimension) up to order 0(&l), which is suficient for direct evaluation of four-loop 
integrals. 

‘After the present paper WIZS completed we discovered that the new version of SCHOONSCHIP 
has been worked out for NeXT workstations by M.Veltman. The new version include number of 
new tools and much more convenient then previous ones. 
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2.1 The package. 

The program HEPLoops 2 (version 2.0) consists of 10 blocks. (The versions 3 contain 
also aditional blocks for ultraviolet renormalization procedure and for integration of 
trivial 4th loop.) The blocks are linked in proper order which should not be changed 
by the user. However, in large scale calculations it is possible to execute block by 
block in several runs. The total number of lines in the package is 3380. 

The file DECLARE contains all necessary declarations of symbols, functions etc. This 
file is included in each program block by include command. The file FORMset defines 
all appropriate system parameters, which usually requires some trivial adjustements 
for the particular type of computer (see FORM manual [S]). The file INPUT contains 
the input for initial diagrams. The user will deal mainly with only this file to put the 
corresponding expressions for the Feynman diagrams. The file INPUT is included 
in the Block START by the include command. Block SCHEME defines a scheme in 
which the result will be printed. The basic version of program gives the result in the 
normalizations of momentum integrals corresponding to the MS-scheme [28]. In this 
normalization the trivial one-loop scalar Feynman integral looks like: 

(lJ2)’ J g$ & Q)2 = 
2 c 1 

pi+ ( >I ; + 2 + 4E + (8 - ;((3))&2 

+(16 - $3) - ;C(4))e3 + (32 - $3) - y<(4) - +5))s4 + o(s’)] 

(1) 

However it is straightforward to replace the default scheme with any other MS- 
type scheme. The other program blocks step-by-step implement the algorithm [5]. 
(More details on the structure of the program blocks will be given in the extended 
publication.) 

‘For the convenience we have keeped the same uames of blocks, some of the variables and termi- 
nology from the program MINCER [23]. H owever, we have changed the well reputed name MINCER 
to HEPLoops. 
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2.2 Input Data Formats 

One-, two- and three-loop basic diagrams are pictured on fig.1. 

Ladder 

Fig.1 One-, two- and three-loop basic, scalar Feynman diagrams. 

Note. that program HEPLoops performs the integrations over t,he D-dimensional 
(D = 4 - 2~) Euclidean space. The directions of the momenta in the program are 
fixed as pictured in fig.1. It is not difficult to see that arbitrary one-, two- and three- 
loop diagrams can be turned by a proper choice of the exponents of the propagator 
powers to one of the types of diagrams pictured in fig.1. 

The file INPUT contains five calculable G(loba1) expressions: Ladder; Benz; Nonpla- 
nar; Twoloop and Oneloop. R.h.s of each of them should contain an input data (or 
zero) for the corresponding topology of the diagram and the number of loops (fig.1). 
Any of the data in the r.h.s. can contain following factors: 

- Numerical coefficient; 

Product (including an empty one) of the integer powers of scalar products Pl.Pl, P2.P2 
for Oneloop; Pl.Pl, . . . . P5.P5 for Twoloop and Pl.Pl, . . . . P8.P8 for Ladder, Benz 
and Nonplanar (the momentum numerations correspond to fig.1); 

-Product (including an empty one) of scalar products Pi.Pj and P;.QQ where i,j = 
1,2 for Oneloop; i, j = 1, . . . . 5 for Twoloop and i,j = 1, . . . . 8 for all three-loop G- 
expressions (QQ codes an external momentum for all diagrams); 
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-Product of Dirac r-matrices (corresponding to the product of the fermionic prop- 
agators and vertices along the fermionic loop), which should be coded within the 
FORM as follows: g-(1, a, Pl,m, P2, . ...) + g-(2, n, P3, I;, P4, . ..) * where the first 
argument indicates the particular fermionic circle (see FORM manual [8]). a, m, n, 
k ,... correspond to y”, ym, y”, y” ,... and Pl, P2 ,... correspond to Pl,y*, (In the 
Block START the trace calculations will be performed for g-(1, . ..). g-(2, . ..)....) 

-Products of four-momenta P;(a) and QQ( (Y w ereo=m,n,k,l,j,a,randi=1,2 ) h 
for Oneloop, i = 1, . . . . 5 for Twoloop and i = 1, . . . . 8 for all three-loop diagrams; 
(Note, that only two uncontracted Lorenz indices m and R are allowed. In this case 
the common factor PRO(m, n) should be used at the input) 

-Scalar variable EPA, .4 2 -1 (EP codes the quantity E = 2 - D/2); 

-Function PRO(m, n), which allows one to calculate the integrals with two uncon- 
tracted Lorenz indices m and n in the numerator of integrand; (Thus, if the integrand 
contains uncontracted Lorenz indices m and n, then the corresponding input should 
be multiplied by PRO(m, n).) 

-Any symbols admitted in FORM which are not used in the program (the list of 
symbols and functions, which are used in the program can be found in the file DE- 
CLARE) 

2.3 Output Data Formats 

After the execution of program is finished the file Result in the log-file of the block 
FINAL contains the result of calculation in the form of a polynomial in l/EP (max 
imum exponent is 3 for three-loop calculations) plus finite part - rational number 
and Riemann zeta functions C(3), C(4) and C(5) with rational coefficients. The Re- 
sult may contain an additional symbolic multiplicative factor which was used as a 
symbolic factor at the input and was transferred to the block FINAL. In the case 
when the input contains two uncontracted Lorenz indices m and n the result for the 
diagram should be proportional to the momentum factor: g”“Q’A(c) - Q”Q”B(E). 
In this case the output of the program will contain a term which is multiplied by 
the symbolic factor VA and another term with symbolic factor VB. These terms 
correspond to the gm” and Q”Q” parts of the result. Furthermore, in the working 
directory the file Result.res will contain the result of calculation, which can be used 
as an input for another FORM package. Note again, that standard version of the 
program prints the result in a normalization corresponding to the MS scheme [28], 
without taking into account color group weights, symmetry factors and the factor 
(4a)-2(cu/4a)“-“(~2/Q2)(‘E), where cr = g2/4a is the coupling, I is the number of 
loops and p is ‘t Hooft’s unit of mass. 



3 Efficiency of the Program 

The test runs of the program HEPLoops and the experience of using it in real calcula- 
tions show that the program is fast enough to perform any three- and four-loop (with 
help of infrarred rearrangement procedure [4]) calculations from the class of prob- 
lems enumerated in the introduction. The program is much faster then the program 
MINCER [23] and the factor 5-7 was observed in calculations of the three-loop dia- 
grams of the type in fig.2 on the Sun workstation. The program on the IBM-PC/486 
(33MHz) is only 3-4 times faster then the MINCER on the IBM compatible 1MFlop 
ES-1060 mainframe. It seems that this factor will grow together with the growth of 
the problem complexity. Such an effect was observed during the recalculation of some 
of the four-loop diagrams contributing to a&&e- + hadrons) [24] by the program 
HEPLoops. 

Recently another program - “The FORM version of MINCER” has been worked out 
(291. This program is written in procedure form and calculates three-loop massless 
propagator type scalar (with no uncontracted Lorenz indices) Feynman diagrams. 
Some useful optimisations have been done. As was claimed in [29], the program 
calculates the diagram pictured in fig.2 within 11.5sec. on the NeXT station (25MHz). 
This is lOO(!) times faster then the original MINCER [23]. The essence of such an 
improvement is that this program extensively uses the database of precalculated three- 
and two-loop scalar integrals (and other databases). Note, that the program MINCER 
[23] as well as the HEPLoops evaluate all of the integrals fully automatically. Thus, 
in this case it is unclear how to compare the efficiency of this programs. On the other 
hand, as was mentioned in the Introduction, the programs which are based on the 
“database approach” are very fast only for the problems they are written for and have 
a restricted area of application (see discussion in [26, 271). So the exciting factor of 
“improvement” - 100 seems to be somewhat spurious. (Indeed, we can even increase 
this factor if we directly use the precalculated value of the diagram in fig.2.) 

PA M p2 n 
P3 

x 
a 

CD 

tP? ti *-QQ 

P6 P4 

” Ps n 
Fig.2 Three-loop diagram contributing to the cr,,,(e+e- -+ hadrons). Solid lines 

correspond to the massless quark propagators, wave lines correspond to the gluon 
propagators in the Feynman gauge and crosses correspond to the electromagnetic 

current vertices. 
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4 Test Run Output 

Below we present fragments of a test run output of the program HEPLoops for the 
diagram pictured on fig.2. The total execution time is 188.2 sec. on the Sun work- 
station (Compare the input, result and time to the ones from [23] for calculation of 
same diagram by the program MINCER) Note, that the time shown on the Test Run 
Output is the time for execution of last block FINAL (not a total time). 
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FORM by J.Vermaseren. Version 1.1 3-jun-1992 

* PROGRAM HEPLoops 
l by L.R.Surguladze 
* _______-_______------------------------ Version 2.0 -___ 

1 --- Block "START' --- 
#- 
t _____--------- INPUT DATA ------------------ 

G Ladder = g-(l,Pl,m,P2,n,P3,a,P4,n,P5,m,P6,a) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

GBenz =O; 
G Nonplanar = 0; 
G Twoloop = 0; 
G Oneloop = 0; 

* ___-----___--- END of INPUT 

Time = 0.23 set Generated terms = 60 
Ladde Terms in output = 60 

Bytes used = 2282 

* 

FINAL loaded 
--- Block 'FINAL' --- 

* ---> HEPLoops 
l --- Version 2.0 --- 
* ---- R E S IJ L T ---- 

Time = 0.07 set Generated terms = 44 
Result Terms in output = 8 

Bytes used = 210 

Result = 
+ 2583/2 + 207*EP^-1 + 82/3*EP^-2 + 8/3*EP^-3 - 320*dzeta(5) - 144' 

dzeta(4) - 1168/3*dzeta(3) - 96*dzeta(3)*EPA-1; 
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